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Abstract

Signaling pathways are vital for the development of organisms, orchestrating a plethora of biological pro-
cesses. Pathways failing to function properly can cause numerous disorders, including neurodegenerative 
diseases and malignant tumors. Only a handful of highly conserved signaling pathways are able to specify 
cell fates during development. Wnt signaling is one of those and it is known to be involved in development, 
tissue maintenance and homeostasis. Wnt signalling’s importance is underlined by its conserved presence 
in almost all mammalian organisms. Mis-regulation of Wnt signaling can result in numerous diseases. We 
used previously published Rna-seq datasets, deriving from gene edited Hek293T cell lines. Those cells lines 
lack major components of the Wnt signalling pathway. Here, we are combining machine learning together 
with traditional statistical analysis methods, in order to analyze the RNA-seq data, but also to compare 
the robustness of machine learning versus traditional statistical analysis methods. In addition, enrichment 
analysis based both on machine learning and statistical analysis, is been introduced. Finally, we reveal nu-
merous genes, which are potentially linked to diseases for the first time, utilizing our A.I. analysis.
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Introduction

 Wnt signaling pathway is highly conserved from the most primitive animals to humans, which con-Wnt signaling pathway is highly conserved from the most primitive animals to humans, which con-
trols a plethora of cell fate decisions during development, playing a vital role in the early stages of devel-
opment [1], tissue maintenance [2], while it is also active in stem cell compartments of adult tissues. Wnt 
signaling was first discovered due to its link with cancer [3]. Examples of cancer types where Wnt signaling 
is involved are: gastrointestinal [4], leukemia [5] and breast cancer [6]. Today, there are 19 Wnt genes iden-
tified in mammals and 7 in Drosophila.
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 In the pathways active state Wnt ligands, which are present in the extracellular space are able to 
bound to the Frizzled [7] receptor and LRP [8] co-receptors. This binding stimulates the accumulation 
of cytosolic β-catenin, followed by its nuclear localization. Stabilized β-catenin can enter the nucleus, 
where it associates with T Cell Factor/Lymphoid Enhancer Factor (TCF/LEF) family in order to activate 
the transcription of Wnt target genes [9]. Of note, β-catenin cannot bind directly to the DNA, thus TCF/Lef 
factors are the link that allows β-catenin to bind to the DNA.

 Cell lines lacking all TCF/LEF proteins and/or β-catenin, were stimulated with two approaches, 
using WNT3a recombinant protein and GSK-3 inhibitor (Chir). Unstimulated cell lines were used as control. 
CHIR-stimulated, WNT3a-stimulated and control cell lines were subjected to RNA-sequencing. The raw 
RNA-seq data that are used and analyzed in this dissertation were initially published in Embo Journal in 
2019 [10].

 The extended use of whole-genome sequencing techniques such as DNA-seq, RNA-seq, ChIP-seq, 
single-cell RNA, proteomics and metabolomics generates an immense amount of data, thus encouraging a 
growing use of machine learning in biology. Machine learning is a valuable tool for analyzing large data with 
many individual points, for data which contain a large number of features or when it is desired to automate 
the data analysis pipeline [11]. When large amounts of data are available, highly parameterized models, 
such as deep learning can provide an elegant solution [12]. The biggest challenge of modelling biological 
data is the sheer variety and diversity of the data [13]. Biological data can vary from gene sequences, gene 
expression levels, to 3D structures and microscopy images. Due to this diversity, there are no off-the-shelf, 
ready to use tools for the use of machine learning in those biological data [14]. The choice of model, training 
and test depends heavily on the question one needs to answer. So far traditional machine learning methods 
are seen as the first area to explore in finding the most appropriate method for a given biological problem.

 Our aim here is to combine whole genome sequencing data, RNA-seq, with machine learning 
techniques. Furthermore, combining machine learning with traditional statistical analysis will strengthen 
the findings of the analysis. Utilizing both traditional statistical methods and machine learning in RNA-seq 
analysis offers a synergistic approach that harnesses the strengths of both techniques. While traditional 
statistical methods excel at identifying differentially expressed genes based on set thresholds and 
assumptions, machine learning can capture intricate patterns and interactions that might be overlooked 
by conventional methods alone. By integrating machine learning, one can delve deeper into the data, 
uncovering non-linear relationships and providing robust predictive models. This combined approach 
ensures a more comprehensive and nuanced analysis, maximizing the chances of pinpointing reliable and 
biologically relevant data.

 To further refine the analysis, we employed the Borda Count in order to amalgamate the insights 
derived from both statistical and machine learning techniques in RNA-seq analysis. This judicious integration 
enhances the robustness of the results, drawing from the unique strengths of each approach. This holistic 
strategy not only counteracts the individual limitations of each method but also instills greater confidence 
in the final set of biomarkers, paving the way for a more rigorous and comprehensive analysis. Finally, gene 
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group overlap through the different treatments will provide a more robust understanding of Wnt signaling.

Methods

 In our study, we deployed an integrated computational framework that combines statistical and 
machine learning analyses with a gene sorting methodology to dissect and interpret genomic datasets. 
For this we used an interesting RNA-seq data set published in 2019 by (Doumpas et al. 2019). This novel 
approach allowed for a comprehensive exploration of the genomic intricacies present within our research. 
To achieve this, the dataset was systematically divided into 20 distinct categories, each representing a 
unique combination of conditions and variables. The 20 groups generated here dipict the different cell 
types and treatmetns that were used, such as “WT-unstim” which is the control group, “WT-chir” which are 
wild type cells treated with Chir, “WT-Wnt3a” containing cells which were treated with recombinant Wnt3a 
protein (Table 1). D4Tcf describes cells lacking all four TCF/LEF factors. dBcat characterizes cells which 
lack only beta-catenin This categorization was crucial for tailoring our analyses to be specific and relevant 
to each set of experimental conditions, thus enabling a more detailed and precise understanding of the 
dataset’s underlying patterns and trends.

Table 1: Comparison of genetic and treatment conditions in mouse models.

Group Comparison description Condition A Condition B

1 WT unstimulated vs WT Chir WT unstimulated WT Chir

2 WT unstimulated vs WT Wnt3a WT unstimulated WT Wnt3a

3 dBcat unstimulated vs dBcat Wnt3a dBcat unstimulated dBcat Wnt3a

4 dBcat unstimulated vs dBcat Chir dBcat unstimulated dBcat Chir

5 d4Tcf unstimulated vs d4Tcf Wnt3a d4Tcf unstimulated d4Tcf Wnt3a

6 d4Tcf unstimulated vs d4Tcf Chir d4Tcf unstimulated d4Tcf Chir

7 d4Tcf_dBcat unstimulated vs d4Tcf_dBcat Wnt3a d4Tcf_dBcat unstimulated d4Tcf_dBcat Wnt3a

8 d4Tcf_dBcat unstimulated vs d4Tcf_dBcat Chir d4Tcf_dBcat unstimulated d4Tcf_dBcat Chir

9 WT Chir vs dBcat Chir WT Chir dBcat Chir

10 WT Chir vs d4Tcf WT Chir d4Tcf

11 WT Chir vs d4Tcf_dBcat Chir WT Chir d4Tcf_dBcat Chir

12 WT Wnt3a vs dBcat Wnt3a WT Wnt3a dBcat Wnt3a

13 WT Wnt3a vs d4Tcf Wnt3a WT Wnt3a d4Tcf Wnt3a

14 WT Wnt3a vs d4Tcf_dBcat Wnt3a WT Wnt3a d4Tcf_dBcat Wnt3a

15 WT unstimulated vs WT Chir vs WT Wnt3a WT unstimulated WT Chir, WT Wnt3a

16 dBcat unstimulated vs dBcat Chir vs dBcat Wnt3a dBcat unstimulated dBcat Chir, dBcat Wnt3a

17 d4Tcf unstimulated vs d4Tcf Chir vs d4Tcf Wnt3a d4Tcf unstimulated d4Tcf Chir, d4Tcf Wnt3a

18 d4Tcf_dBcat unstimulated vs d4Tcf_dBcat Chir vs d4Tcf_
dBcat Wnt3a

d4Tcf_dBcat unstimulated d4Tcf_dBcat Chir, d4Tcf_dBcat Wnt3a

19 WT unstimulated vs all Chir treated conditions WT unstimulated All Chir treated

20 WT unstimulated vs all Wnt3a treated conditions WT unstimulated All Wnt3a treated



Vol 10: Issue 09: 2223

Page 4

Integrated analysis approach

 Statistical analysis: We performed differential expression analysis on each group utilizing the 
DESeq2 [15] package, acclaimed for its effectiveness in analyzing differential gene expression from raw 
count data. The Likelihood Ratio Test (LRT) was chosen to discern genes exhibiting significant expression 
differences across conditions. Following this, we selected the top 500 genes from each group based on the 
criteria of minimal False Discovery Rate (FDR) and maximal absolute log2 Fold Change (logFC). This process 
aimed to prioritize genes demonstrating not only significant differential expression but also significant 
changes in expression magnitude.

 Machine learning analysis: Concurrently, we employed the Random Forest (RF) algorithm using 
the package caret [16] to identify the most impactful variables within our dataset. Prior to model training, 
we conducted pre-processing steps such as centering, scaling, and imputation of missing values via the 
k-nearest neighbors method. To ensure the model’s integrity and to mitigate overfitting, we implemented a 
10-fold cross-validation strategy. After training, variable importance scores were determined, and the top 
500 variables were selected for further examination. This method enabled the identification of genes or 
features with significant influence on our dataset.

 Gene sorting and integration: A key phase in our analysis was the identification of genes consistently 
present across the dataset, focusing on those found in at least 50% of the datasets. This selective approach 
ensured our attention was directed towards genes with significant and consistent presence, thereby 
avoiding anomalies or infrequent occurrences.

Ensemble strategy for comprehensive gene ranking and integration

 Borda vote integration: We employed an ensemble method, specifically the Borda Count technique 
[17], to combine and rank genes according to their occurrence across different gene lists obtained from our 
statistical and machine learning analyses. This advanced approach facilitated the creation of a unified list 
comprising the top 100 genes, integrating insights from both analytical methods. The resulting integrated 
ranking highlighted the most significant genes, those repeatedly emphasized across our comprehensive 
analytical framework. This method ensured an equitable and exhaustive evaluation of gene importance 
within the varied analytical results, offering a complete perspective on the principal genetic determinants 
in our dataset.

 Enrichment analysis: Subsequent to the gene sorting process using statistical methods, machine 
learning techniques, and the ensemble strategy, we embarked on an enrichment analysis. The GO_Biological_
Process_2021 and GO_Molecular_Function_2021 databases were instrumental in elucidating the roles and 
significance of the selected genes. This critical step afforded a biological context to our findings, bridging our 
analytical endeavors with tangible biological processes and functions. Through this analysis, we were able 
to link the computational insights to real-world biological mechanisms, thereby enhancing the relevance 
and impact of our study’s outcomes.
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Results 

 Our comprehensive exploration of Wnt signaling utilized an integrated approach combining 
statistical analysis and machine learning to investigate RNA-seq data deriving from four genetically distinct 
HEK 293T cell lines: Wild Type (WT) as control, dBcat (β-catenin knockout), d4Tcf (TCF/LEF knockout but 
retains β-catenin), and d4Tcf_dBcat (lacking both β-catenin and TCF/LEF). These cell lines were subjected to 
three treatments-unstimulated (control), Wnt3a, and Chir-to dissect the nuances of Wnt pathway activation 
across different genetic contexts. Conducted in triplicate, this setup spanned 12 experimental conditions 
aimed at unraveling the pathway’s behavior under varied genetic modifications and treatments. More 
details about the experimental conditions can be found in Doumpas et al. 2019) The data were segmented 
into 20 groups based on the 500 most upregulated genes, facilitating a rich comparison landscape to derive 
biologically meaningful insights. The 500 upregulated gene limit is an arbitrary one and was selected in 
order to be able to have an identical number of genes for both types of analysis. Furthermore, we believe 
that 500 genes can generate a reasonable biological picture while simultaneously being easy to work with.

 Utilizing the 20 groups that we generated we wanted to find out the number of genes which stayed 
expressed in all or most of the groups. The use of heatmaps for visual exploration of gene expression 
overlaps among these groups, leveraging traditional statistical analysis grounded in criteria of minimal 
False Discovery Rate (FDR) and maximal absolute log2 Fold Change (logFC), revealed pronounced overlaps. 
Notably, the comparison between Group 1 (WT unstimulated vs WT Chir) and Group 2 (WT unstimulated 
vs WT Wnt3a) demonstrated a significant commonality of 133 genes, showcasing the method’s efficacy 
in identifying gene expression patterns across treatments. This visual representation underscored the 
data’s reliability and the Wnt pathway’s consistent activation across different activation methods, albeit 
with variances attributable to the differing activation potencies of Chir and Wnt3a, indicating nuanced 
responses of the cell lines to varying activation strengths (Figure 1).

 Since the analysis is reliable and the groups show the expected behavior, we can focus now on further 
interesting at unexpected group overlaps. One important finding is the comparison of group 3 and group 
5. In group 3 the response on Wnt3a treatment of a cell line that lacks β-catenin is investigated. In group 5, 
the response on Wnt3a treatment of a cell line that lacks all TCFs is investigated. The comparison between 
group 3 versus group 5, reveals an overlap of only 38 out of 500 genes. Of note, that the stimulation that 
was used in both groups is Wnt3a recombinant protein. This finding can be interpreted as follows, it is of 
high importance for the cell whether β-catenin or TCFs are lacking, since the Wnt response is very different. 
If the response was the same, one would expect a higher overlap. Furthermore, there is no global response 
mechanism in the absence of Wnt components but rather a defined set of genes is activated depending on 
the Wnt signaling component that is missing. Furthermore, the heatmap generated here clearly shows that 
indeed there is gene overlap between the different groups, with lots of variation on the overlap percentage. 
Of note, despite the different genetic petrubations and treatments, there are always overlapping genes. This 
type of analysis, the amount of data and comparisons presented in the heatmap is providing a great source 
for wet lab experimetns and further understanding of the Wnt signalling pathway. There are numerous 
experimental questions that can be adressed using that heatmap.
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Figure 1: Heatmap illustrating gene overlaps post-statistical analysis: This heatmap visually represents the extent of gene 
overlap between various groups, derived from our statistical analysis. The color gradient within the heatmap is indicative 
of the overlap magnitude among the genes, with deeper shades signifying a greater number of overlapping genes across the 
analyzed groups. The analysis focused on the top 500 genes from each group to ensure a comprehensive comparison, highli-
ghting the intricate patterns of gene expression and interaction within the Wnt signaling pathway.

 Having generated a Heatmap based on statistical analysis we focused on utilizing machine learning 
for a similar data analysis. Diverging from the traditional statistical analysis, the machine learning approach 
utilizing Random Forest algorithms offered a distinct perspective on gene significance. This analysis 
underscored a substantially higher overlap between groups, especially notable between Group 1 and 
Group 2, revealing an impressive 438 out 500 genes overlap. Random Forest is basing the gene selection 
on specific characteristics and not in logFold change, so the genes in this analysis are sorted based on 
important features. This high gene overlap has a two-fold meaning. One interpetation is that the genes 

Figure 2: Heatmap displaying gene overlap post-machine learning analysis: This heatmap graphically depicts the gene over-
lap intensity across various groups as determined by our machine learning analysis. A color spectrum, with darker shades 
of red indicating higher levels of gene overlap, visually conveys the comparative analysis of gene interactions. The selection 
criteria for this heatmap involved concentrating on the top 500 genes from each group, ensuring a focused and detailed exa-
mination of gene overlap patterns within the context of machine learning insights.
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selected from the algorithm are housekeeping genes because the genetic pertrubations do not seem to 
affect them. Another interpatation is that there is a Wnt fail safe mechanism which kicks in when Wnt 
signalling components are damaged, and is able to keep acticve the known Wnt genes. There is no such 
mechanism identified so far. Nevertheless, this contrast arising from the two analysis methods highlights 
the advanced insights provided by machine learning (Figure 2). Nevertheless, the difference in the two 
maps generated from the two different analysis indicates the importance of combining various techniques 
for analyzing whole genome data.

 We deemed important to generate some UpSet plots to better visualize specific group overlap. UpSet 
plots have emerged as a powerful visualization technique for elucidating the complex intersections among 
gene sets. UpSet plots are capable of displaying datasets with more than three intersecting sets, presenting 
intersections in a matrix format. In this matrix, rows correspond to the sets (or groups, in this context), 
and columns represent the intersections between these sets. Notably, for each row, cells that are part of an 
intersection are filled in. If multiple cells in a row are filled, they are connected with a line. Figures 3 and 4 
showcase an UpSet plot utilizing the same data that were used for the heatmap. 

Figure 3: UpSet plot depicting gene overlaps following statistical analysis: This UpSet plot highlights key gene overlaps 
among different groups, based on statistical analysis outcomes. It was constructed using the top 500 genes identified in each 
group to accurately represent the primary gene overlaps observed across the studied groups.
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Figure 4: UpSet plot illustrating gene intersections post-machine learning analysis: This UpSet plot reveals the significant 
intersections of genes across various groups, derived from machine learning evaluations. It utilizes the top 500 genes from 
each group to map out the principal points of overlap, offering a detailed view of how these genes intersect across the ana-
lyzed group.

 For better understanding of our data, we also incoporated Gene Ontology (GO) analysis to further 
enriched our analysis. G.O deriving from our statistical analysis identified L-serine biosynthesis as a critical 
biological process that the overlapping genes were involved in. We were able to highlight HSPA5 and 
HERPUD1 as the top hits. Those two genes have known functions in maintaining endoplasmic reticulum 
homeostasis. This emphasizes the resilience and essential functions of housekeeping genes under various 
stresses, including genetic manipulations and pathway activations. Machine learning-based G.O. analysis 
reaffirmed the Unfolded Protein Response’s (UPR) significance, particularly highlighting the PERK-
mediated pathway’s role in cellular homeostasis amidst genetic alterations and unveiling novel roles of 
transporter proteins in Wnt signaling (Table 2). This result suggests that the genes that are more active in 
our analysis are genes involved in housekeeping biological functions.

Table 2: Biological pathways and associated genes.

Term Adjusted 
PValue Genes

1 PERK-mediated unfolded protein response (GO:0036499) 3.641832e-04 HSPA5;HERPUD1

2 Integrated stress response signaling (GO:0140467) 4.630147e-04 HSPA5;HERPUD1

3 Endoplasmic reticulum to cytosol transport (GO:1903513) 4.630147e-04 SEL1L;HERPUD1

4 Response to endoplasmic reticulum stress (GO:0034976) 1.335587e-07 HSPA5;SEL1L;HYOU1;HERPUD1;PDIA4

5 Retrograde protein transport, ER to cytosol (GO:0030970) 5.137679e-04 SEL1L;HERPUD1

6 Protein exit from endoplasmic reticulum (GO:0032527) 9.106201e-04 SEL1L;HERPUD1

7 Ubiquitin-dependent ERAD pathway (GO:0030433) 3.242671e-04 HSPA5;SEL1L;HERPUD1

8 ERAD pathway (GO:0036503) 3.641832e-04 HSPA5;SEL1L;HERPUD1

9 Establishment of protein localization to extracellular region 
(GO:0044750)

3.017672e-03 SEL1L;PDIA4

10 Response to unfolded protein (GO:0006986) 3.083432e-03 HSPA5;HERPUD1
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 Finally, we set up an ensemble approach, merging insights from both analyses. This led to consistently 
underscore the UPR as a paramount biological process, confirming the cell’s prioritization of survival 
mechanisms across various conditions. This convergence not only validates the experimental data but also 
openes new avenues for understanding the complex interactions and functionalities at the molecular level. 
Novel connections between amino acid transporters like SLC7A8 and SLC3A2 and cancer processes were 
unveiled, linking them to the observed Wnt signaling dysregulation in our experimental setups.

 Our integrated analysis, combining traditional statistical methods with advanced machine learning 
techniques, unravels the complex biological responses to genetic manipulations and pathway activations. 
This approach provides a robust foundation for future research into the dynamic interplay of Wnt signaling 
with cellular functions and disease mechanisms, offering profound insights into the intricate machinery 
of biological systems. All Figures published here serve as comprehensive visual representations of our 
findings, illustrating the intricate gene expression patterns and overlaps across different conditions and 
treatments, providing a cohesive narrative of the nuanced regulation within the Wnt signaling pathway.

Discussion

 In this study, we have embarked on a groundbreaking journey to dissect and elucidate the complexities 
of genomic datasets through an innovative integrated computational framework that seamlessly combines 
statistical analysis, machine learning, and ensemble approach. Our methodology, levereging on in-depth 
exploration of the Wnt signaling pathway, establishes a robust pipeline for understanding the nuanced 
regulation of gene expression influenced by genetic modifications and environmental factors. This 
computational framework’s strength lies in its unparalleled ability to unveil biologically significant insights, 
surpassing the capabilities of traditional analytical methods. By systematically categorizing the genomic 
dataset and employing differential expression analysis with the DESeq2 package, we have spotlighted genes 
that exhibit significant changes under various conditions, thereby identifying genes of potential biological 
importance essential for deciphering the dataset’s underlying patterns and trends.

 Furthermore, the integration of machine learning analysis, especially through the Random Forest 
algorithm, has shed light on the significance of genes, revealing a considerable overlap in gene expression 
among different cell lines. This advanced understanding provided by machine learning is complemented by 
the enrichment analysis, which has pinpointed critical biological processes such as L-serine biosynthesis 
and the maintenance of endoplasmic reticulum homeostasis, effectively bridging our computational 
discoveries with tangible biological processes and mechanisms, and thus, significantly amplifying the 
impact of our study’s findings.

 Our investigation has unveiled new insights into the universal response mechanisms to Wnt pathway 
activation, suggesting the possible existence of a global, fail-safe Wnt mechanism. Supported robustly by 
machine learning analysis, this discovery proposes that cells can activate a consistent gene response, even in 
the absence of key Wnt components, potentially through cellular components that substitute the functions 
of TCF and β-catenin. Moreover, the identification of crucial biological processes and molecular functions, 
including the unfolded protein response and the involvement of amino acid transporters like SLC7A8 and 
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SLC3A2 [18,19], opens new avenues for understanding cellular responses to stress and pathway activations. 
These findings not only validate our experimental data but also pave the way for exploring the complex 
molecular interactions, particularly in relation to disease mechanisms such as cancer.

 The discovery of novel connections between Wnt signaling and specific genes, including amino 
acid transporters, underscores the potential of these findings to inform the development of innovative 
therapeutic strategies. This highlights the critical role of Wnt signaling in various diseases, offering a 
valuable resource for future research aimed at elucidating the pathway’s role in disease mechanisms. We 
advocate for the continued integration of computational methods with experimental validation in future 
research endeavors, underscoring the invaluable nature of this approach in enhancing our understanding 
of biological systems. Our study serves as a blueprint for future genomic and molecular biology research, 
demonstrating the power of combining statistical analysis with machine learning to interpret complex 
genomic data.

Conclusion

 In conclusion, our study shows that integrating statistical analysis, machine learning, and gene 
sorting methodologies, can be used to identified novel gene interactions and pathways of biological 
significance. These findings not only contribute to the current knowledge base but also open up potential 
targets for therapeutic intervention, particularly in cancer research. The insights gained from this study 
underscore the importance of integrating diverse analytical approaches to unravel the complexities of 
biological systems, paving the way for future research in the field.
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